Проектирование систем искусственного интеллекта

       

Иерархический кластерный анализ


Процедура иерархического кластерного анализа в SPSS предусматривает группировку как объектов (строк матрицы данных), так и переменных (столбцов). Можно считать, что в последнем случае роль объектов играют переменные, а роль переменных — столбцы.

Этот метод реализует иерархический агломеративный алгоритм. Его смысл заключается в следующем. Перед началом кластеризации все объекты считаются отдельными кластерами, которые в ходе алгоритма объединяются. Вначале выбирается пара ближайших кластеров, которые объединяются в один кластер. В результате количество кластеров становится равным N-1. Процедура повторяется, пока все классы не объединятся. На любом этапе объединение можно прервать, получив нужное число кластеров. Таким образом, результат работы алгоритма агрегирования определяют способы вычисления расстояния между объектами и определения близости между кластерами.

Для определения расстояния между парой кластеров могут быть сформулированы различные разумные подходы. С учетом этого в SPSS предусмотрены следующие методы, определяемые на основе расстояний между объектами:

  • Среднее расстояние между кластерами (Between-groups linkage).
  • Среднее расстояние между всеми объектами пары кластеров с учетом расстояний внутри кластеров(Within-groups linkage).
  • Расстояние между ближайшими соседями — ближайшими объектами кластеров (Nearest neighbor).
  • Расстояние между самыми далекими соседями (Furthest neighbor).
  • Расстояние между центрами кластеров (Centroid clustering).
  • Расстояние между центрами кластеров (Centroid clustering), или центроидный метод. Недостатком этого метода является то, что центр объединенного кластера вычисляется как среднее центров объединяемых кластеров, без учета их объема.
  • Метод медиан — тот же центроидный метод, но центр объединенного кластера вычисляется как среднее всех объектов (Median clustering).
  • Метод Варда (Ward's method). В качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения.

Расстояния и меры близости между объектами.
У нас нет возможности сделать полный обзор всех коэффициентов, поэтому остановимся лишь на характерных расстояниях и мерах близости для определенных видов данных.

Меры близости отличаются от расстояний тем, что они тем больше, чем более похожи объекты.

Пусть имеются два объекта X=(X1,…,Xm) и Y=(Y1,…,Ym). Применяя эту запись для объектов, определить основные виды расстояний, используемых процедуре CLUSTER:

  • Евклидово расстояние
    (Euclidian distance).
  • Квадрат евклидова расстояния
    (Squared Euclidian distance)
Эвклидово расстояние и его квадрат целесообразно использовать для анализа количественных данных.

  • Мера близости — коэффициент корреляции
    , где
    и
    — компоненты стандартизованных векторов X и Y. Эту меру целесообразно использовать для выявления кластеров переменных, а не объектов.
  • Расстояние хи-квадрат получается на основе таблицы сопряженности, составленной из объектов X и Y , которые, предположительно, являются Таблица 5.1. Таблица для пары объектов — строк частот
    X X1 ... Xm X.
    Y Y1 ... Ym Y.
    X+Y X1+Y1 ... Xm+Ym X.+Y.
    векторами частот. Здесь рассматриваются ожидаемые значения элементов, равные E(Xi)=X.*(Xi+Yi)/(X.+Y.) и E(Yi)=Y.*(Xi+Yi)/(X.+Y.), а расстояние хи-квадрат имеет вид корня из соответствующего показателя
    .
  • Расстояние Фи-квадрат является расстоянием хи-квадрат, нормированным "число объектов" в таблице сопряженности, представляемой строками X и Y, т.е. на корень квадратный из N=X.+Y..
  • В иерархичесом кластерном анализе в SPSS также имеется несколько видов расстояний для бинарных данных (векторы X и Y состоят из нулей и единиц, обозначающих наличие или отсутствие определенных свойств объектов). Наиболее естественными из них, по видимому, являются евклидово расстояние и его квадрат.


Содержание раздела