Персептроны
Пока о проблеме обучения распознаванию образов удавалось говорить в общих чертах, не выделяя конкретные методы или алгоритмы, — не возникало и трудностей, появляющихся всяких раз, когда приходится иметь дело с огромным множеством примеров, у которых общий подход к решению проблемы ОРО. Коварство самой проблемы состоит в том, что, на первый взгляд, все методы и алгоритмы кажутся совершенно различными и, что самое неприятное, часто никакой из них не годится для решения той задачи, которую крайне необходимо срочно решить. И тогда появляется желание выдумать новый алгоритм, который, может быть, достигнет цели. Очевидно, именно это привело к возникновению огромного множества алгоритмов, в котором не так-то легко разобраться.
Один из методов решения задач обучения распознаванию образов основан на моделировании гипотетического механизма человеческого мозга. Структура модели заранее постулируется. При таком подходе уровень биологических знаний или гипотез о биологических механизмах является исходной предпосылкой, на которой базируются модели этих механизмов. Примером такого направления в теории и практике проблемы ОРО является класс устройств, называемых персептронами. Нужно отметить, что персептроны на заре своего возникновения рассматривались только как эвристические модели механизма мозга. Впоследствии они стали основополагающей схемой в построении кусочно-линейных моделей, обучающихся распознаванию образов.
Рис. 4.1. Персептрон
В наиболее простом виде персептрон (рис. 4.1.) состоит из совокупности чувствительных (сенсорных) элементов (S-элементов), на которые поступают входные сигналы. S-элементы случайным образом связаны с совокупностью ассоциативных элементов (А-элементов), выход которых отличается от нуля только тогда, когда возбуждено достаточно большое число S-элементов, воздействующих на один А-элемент. А-элементы соединены с реагирующими элементами (R-элементами) связями, коэффициенты усиления (v) которых переменны и изменяются в процессе обучения. Взвешенные комбинации выходов R-элементов составляют реакцию системы, которая указывает на принадлежность распознаваемого объекта определенному образу.
Если распознаются только два образа, то в персептроне устанавливается только один R-элемент, который обладает двумя реакциями — положительной и отрицательной. Если образов больше двух, то для каждого образа устана вливают свой R-элемент, а выход каждого такого элемента представляет линейную комбинацию выходов A-элементов:
(4.1) |
Аналогично записывается уравнение i-го A-элемента:
(4.2) |
Персептрон обучается путем предъявления обучающей последовательности изображений объектов, принадлежащих образам V1 и V2. В процессе обучения изменяются веса vi А-элементов. В частности, если применяется система подкрепления с коррекцией ошибок, прежде всего учитывается правильность решения, принимаемого персептроном. Если решение правильно, то веса связей всех сработавших А-элементов, которые ведут к R-элементу, выдавшему правильное решение, увеличиваются, а веса несработавших А-элементов остаются неизменными. Можно оставлять неизменными веса сработавших А-элементов, но уменьшать веса несработавших. В некоторых случаях веса сработавших связей увеличивают, а несработавших — уменьшают.
После процесса обучения персептрон сам, без учителя, начинает классифицировать новые объекты.
Если персептрон действует по описанной схеме и в нем допускаются лишь связи, идущие от бинарных S-элементов к A-элементам и от A-элементов к единственному R-элементу, то такой персептрон принято называть элементарным -персептроном. Обычно классификация C(W) задается учителем. Персептрон должен выработать в процессе обучения классификацию, задуманную учителем.
О персептронах было сформулировано и доказано несколько основополагающих теорем, две из которых, определяющие основные свойства персептрона, приведены ниже.
Теорема 1. Класс элементарных -персептронов, для которых существует решение для любой задуманной классификации, не является пустым.
Эта теорема утверждает, что для любой классификации обучающей последовательности можно подобрать такой набор (из бесконечного набора) А-элементов, в котором будет осуществлено задуманное разделение обучающей последовательности при помощи линейного решающего правила .
Теорема 2. Если для некоторой классификации C(W) решение существует, то в процессе обучения -персептрона с коррекцией ошибок, начинающегося с произвольного исходного состояния, это решение будет достигнуто в течение конечного промежутка времени.
Смысл этой теоремы состоит в том, что если относительно задуманной классификации можно найти набор А-элементов, в котором существует решение, то в рамках этого набора оно будет достигнуто в конечный промежуток времени.
Обычно обсуждают свойства бесконечного персептрона, т. е. персептрона с бесконечным числом А-элементов со всевозможными связями с S-элементами (полный набор A-элементов). Для таких персептронов решение всегда существует, а раз оно существует, то оно и достижимо в -персептронах с коррекцией ошибок.
Очень интересную область исследований представляют собой многослойные персептроны и персептроны с перекрестными связями, но теория этих систем практически еще не разработана.