Симплексный метод решения задачи линейного программирования
Для решения ЗЛП существует универсальный метод – метод последовательного улучшения плана или симплекс-метод, который состоит из двух вычислительных процедур: симплекс-метода с естественным базисом и симплекс-метода с искусственным базисом (М-метод).
Выбор конкретной вычислительной процедуры осуществляется после приведения исходной ЗЛП к каноническому виду (КЗЛП):
В теории линейного программирования (ЛП) показано, что оптимальное решение ЗЛП связано с угловыми (крайними) точками многогранника решений, которым отвечают опорные планы (неотрицательные базисные решения системы уравнений КЗЛП). Каждый из опорных планов определяется системой m линейно независимых векторов, содержащихся в данной системе из n векторов А1, А2,…, Аn. Верхняя граница количества опорных планов, содержащихся в данной задаче, определяется числом сочетаний Сnm.
Задача 3. Получить решение по модели задачи об оптимальном использовании ограниченных ресурсов (решить ЗЛП):
Приведем задачу к каноническому виду путем введения дополнительных переменных x 3 и x4:
Найдем все опорные планы КЗЛП. Используя метод Жордана-Гаусса выписываем все базисные решения системы уравнений:
Последовательно будем иметь:
Х1
= (0,0,300,150); Х2= (150,0,150,0); Х3= (0,150,-150,0); Х4= (75,75,0,0); Х5= (300,0,0,-150); Х6= (0,100,0,50).
Среди этих базисных решений четыре опорных:
Х1
= (0,0,300,150); Х2= (150,0,150,0); Х4= (75,75,0,0); Х6= (0,100,0,50).
Указанным опорным планам на рис.5 отвечают соответственно следующие угловые точки и значения ЦФ в них:
А(0,0) и f(0,0)=0; Д(150,0) и f(150,0)=300; С(75,75) и f(75,75)=375; В(0,100) и f(0,100)=300.
Согласно теории ЛП оптимальное решение содержится среди опорных планов.
Рис.5
Таким образом, максимальное значение, равное 375, целевая функция f (x1,x2) достигает на опорном плане Х4= (75,75,0,0), т.е. оптимальное решение рассматриваемой ЗЛП: x1 = 75, x2 = 75.
Понятно, что при больших m и n найти оптимальный план, перебирая указанным выше способом (прямым перебором) все опорные ЗЛП весьма трудно. Поэтому необходимо иметь схему, позволяющую осуществлять упорядоченный переход от одного опорного плана к другому. Такой схемой является симплексный метод.
Симплекс-метод с естественным базисом
Для применения симплекс-метода с естественным базисом КЗЛП должна содержать единичную подматрицу размером mxm – в этом случае очевиден начальный опорный план (неотрицательное базисное решение системы ограничений КЗЛП).
Для определенности предположим, что первые m векторов матрицы системы уравнений составляют единичную матрицу. Тогда первоначальный опорный план очевиден – (b1, b2 ,…, bm ,0,…,0).
Проверка на оптимальность опорного плана проходит с помощью признака оптимальности, переход к другому опорному плану проводится с помощью преобразований Жордана-Гаусса при использовании математического признака оптимальности. Полученный опорный план снова проверяется на оптимальность и так далее. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи (конечного оптимума нет), либо получается оптимальный опорный план и соответствующее ему оптимальное значение ЦФ.
Математический признак оптимальности состоит из следующих двух теорем:
1. Если для всех векторов А1, А2,…, Аn выполняется условие
где ,
то полученный опорный план является оптимальным.
2. Если для некоторого вектора, не входящего в базис, выполняется условие , то можно получить новый опорный план, для которого значение ЦФ будет больше исходного, при этом могут быть два случая:
- если все компоненты вектора, подлежащего вводу в базис, неположительны, то ЗЛП не имеет решения (конечного оптимума нет);
- если имеется хотя бы одна положительная компонента у вектора, подлежащего вводу в базис, то можно получить новый опорный план.
На основании признака оптимальности в базис вводится вектор Ак , давший минимальную отрицательную величину симплекс разности:
Чтобы выполнялось условие неотрицательности значений опорного плана, выводится из базиса вектор Аr, который дает минимальное положительное оценочное отношение
Строка Аr
называется направляющей, столбец Ак и элемент ar к – направляющими.
Элементы направляющей строки в новой симплекс-таблице вычисляются по формулам:
а элементы i-й строки – по формулам:
Значения нового опорного плана рассчитываются по формулам:
для i = r ;
Процесс решения продолжают либо до получения оптимального плана, либо до установления неограниченности ЦФ. Если среди симплекс-разностей (оценок) оптимального плана нулевые только оценки, соответствующие базисным векторам, то это говорит о единственности оптимального плана. Если же нулевая оценка соответствует вектору, не входящему, то в общем случае это означает, что оптимальный план не единственный.
Примечание. Для использования приведенной процедуры к минимизации линейной функции f (x1,x2,…, xn) следует искать максимум - f (x1,x2,…, xn), затем полученный максимум взять с противоположным знаком. Оптимальное решение то же.
Пример.
Получить решение по модели:
Эта задача (модель) линейного программирования, приведем ее к каноническому виду путем введения дополнительных переменных x 3 и x4:
КЗЛП имеет необходимое число единичных столбцов, т.е. обладает очевидным начальным опорным планом (0,0,300,150). Решение осуществляется симплекс-методом с естественным базисом с оформлением расчетов в симплекс-таблицах:
Номер |
|
В |
2 |
3 |
0 |
0 |
||
симплекс- |
Базис |
план |
|
|
|
|
Q |
|
таблицы |
|
|||||||
А3 |
0 |
300 |
1 |
3 |
1 |
0 |
100 |
|
0 |
А4 |
0 |
150 |
1 |
1 |
0 |
1 |
150 |
f(x) |
0 |
-2 |
-3 |
0 |
0 |
|
||
А2 |
3 |
100 |
1/3 |
1 |
1/3 |
0 |
300 |
|
I |
А4 |
0 |
50 |
2/3 |
0 |
-1/3 |
1 |
75 |
f(x) |
300 |
-1 |
0 |
1 |
0 |
|
||
А2 |
3 |
75 |
0 |
1 |
1/2 |
-1/2 |
||
II |
А1 |
2 |
75 |
1 |
0 |
-1/2 |
3/2 |
|
f(x) |
375 |
0 |
0 |
1/2 |
3/2 |
|
Таким образом, в рассмотренной выше задаче об оптимальном использовании ограниченных ресурсов, оптимальная производственная программа состоит в выпуске 75ед. изделий первого вида и 75ед. изделий второго вида. С этой программой связана максимальная выручка от реализации готовой продукции – 375 у.е.