Решение оптимизационных задач средствами EXCEL




Двойственность в задачах линейного программирования. Анализ полученных оптимальных решений.


С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной; первоначальная задача называется исходной или прямой.

Связь исходной и двойственной задач заключается, в част­ности, в том, что решение одной из них может быть получено непосредственно из решения другой.

Переменные двойственной задачи yi

называют объективно обусловленными оценками, или двойственными оцен­ками, или «ценами» ресурсов, или теневыми ценами.

Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной состав­ляется согласно следующим правилам:

1) целевая функция исходной задачи формули­руется на максимум, а целевая функция двойственной задачи— на минимум, при этом в задаче на  максимум все неравенства в функциональных ограничениях имеют вид £, в задаче на минимум — вид ³;

2) матрица А, составленная из коэффициентов при неизвестных в сис­теме ограничений исходной задачи и аналогич­ная матрица    Ат   в  двойственной задаче получаются друг из друга транс­понированием;

3) число переменных в двойственной задаче равно числу функциональных ограничений исходной задачи, а число ограничений в системе  двойственной задачи — числу переменных в исходной задаче;

4) коэффициентами при неизвестных в целевой функции   двойственной задачи являются свободные члены в  системе ограничений исходной задачи, а правыми частями в ограничениях двойственной задачи — коэффициенты при неизвестных в целевой функции исходной задачи;

5) каждому ограничению одной задачи соответствует переменная другой задачи: номер переменной совпадает с номером ограничения; при этом ограничению, записан­ному в виде неравенства £, соответствует переменная, связанная условием неотрицательности. Если функцио­нальное ограничение исходной задачи является равенст­вом, то соответствующая переменная двойственнвой; задачи может принимать как положительные, так и отрицательные значения




Содержание  Назад  Вперед