Проектирование систем искусственного интеллекта




Пример ЭС, основанной на правилах логического вывода и действующую в обратном порядке - часть 2


Например, Симптом_1 может означать строку "Много ли вы кашляете?", или, если вы пытаетесь отремонтировать неисправный автомобиль, — строку "Ослаб ли свет фар?".

Теперь оформим болезни:

Болезнь p [j, py, pn]
1 Болезнь_1 p1 [j, py, pn]1
2 Болезнь_2 p2 [j, py, pn]2
N Болезнь_N pn [j, py, pn]n

В таком виде мы будем хранить информацию о болезнях. Это не обязательно должны быть болезни — могут быть любые результаты, и каждый оператор содержит один возможный исход и всю информацию, относящуюся к нему.

Поле "болезнь" характеризует название возможного исхода, например "Грипп". Следующее поле — p — это априорная вероятность такого исхода P(H), т.е. вероятность исхода в случае отсутствия дополнительной информации. После этого идет ряд повторяющихся полей из трех элементов. Первый элемент — j — это номер соответствующего симптома (свидетельства, переменной, вопроса, если вы хотите назвать его по-другому). Следующие два элемента — P(E : H) и P(E : не H) — соответственно вероятности получения ответа "Да" на этот вопрос, если возможный исход верен и неверен. Например:

2010Грипп0.01(1, 0.9, 0.01); (2, 1, 0.01); (3, 0, 0.01)

Здесь сказано существует априорная вероятность P(H)=0.01, что любой наугад взятый человек болеет гриппом.

Допустим, программа задает вопрос 1 (симптом 1). Тогда мы имеем P(E : H)=0.9 и P(E : не H)=0.01, а это означает, что если у пациента грипп, то он в девяти случаях из десяти ответит "да" на этот вопрос, а если у него нет гриппа, он ответит "да" лишь в одном случае из ста. Очевидно, ответ "да" подтверждает гипотезу о том, что у него грипп. Ответ "нет" позволяет предположить, что человек гриппом не болеет.

Так же и во второй группе симптомов (2, 1, 0.01). В этом случае P(E : H)=0.9, т.е. если у человека грипп, то этот симптом должен присутствовать. Соответствующий симптом может существовать и при отсутствии гриппа (P(E : не H)=0.01), но это маловероятно.

Вопрос 3 исключает грипп при ответе "да", потому что P(E : H)=0. Это может быть вопрос вроде такого: "наблюдаете ли вы такой симптом на протяжении большей части жизни?" — или что-нибудь вроде этого.

Нужно подумать, — а если вы хотите получить хорошие результаты, то и провести исследование, — чтобы установить обоснованные значения для этих вероятностей. И если быть честным, то получение такой информации — вероятно, труднейшая задача, в решении которой компьютер также сможет существенно помочь Вам. Если вы напишите программу общего назначения, ее основой будет теорема Байеса, утверждающая:

P(H : E) = P(E : H) * P(H) / (P(E : H) * P(H) +P(E : не H) * P(не H).

Вероятность осуществления некой гипотезы H при наличии определенных подтверждающих свидетельств Е вычисляется на основе априорной вероятности этой гипотезы без подтверждающих свидетельств и вероятности осуществления свидетельств при условиях, что гипотеза верна или неверна.

Поэтому, возвращаясь к нашим болезням, увидим:

P(H : E) = py * p / (py * p + pn * (1 - p)) .

В данном случае мы начинаем с того, что Р(Н) = р для всех болезней. Программа задает соответствующий вопрос и в зависимости от ответа вычисляет P(H : E). Ответ "да" подтверждает вышеуказанные расчеты, ответ "нет" тоже, но с (1 – py) вместо py и (1 – pn) вместо pn. Сделав так, мы забываем об этом, за исключением того, что априорная вероятность P(H) заменяется на P(H : E). Затем продолжается выполнение программы, но с учетом постоянной коррекции значения P(H) по мере поступления новой информации.

Описывая алгоритм, мы можем разделить программу на несколько частей.

Часть 1.

Ввод данных.

Часть 2.

Просмотр данных на предмет нахождения априорной вероятности P(H). Программа вырабатывает некоторые значения массива правил и размещает их в массиве RULEVALUE. Это делается для того, чтобы определить, какие вопросы (симптомы) являются самыми важными, и выяснить, о чем спрашивать в первую очередь. Если вы вычислите для каждого вопроса RULEVALUE[I] = RULEVALUE[I] + ABS (P(H : E) – P(H : не E)), то получите значения возможных изменений вероятностей всех болезней, к которым они относятся.

Часть 3.

Программа находит самый важный вопрос и задает его. Существует ряд вариантов, что делать с ответом: вы можете просто сказать: "да" или "нет". Можете попробовать сказать "не знаю", — изменений при этом не произойдет. Гораздо сложнее использовать шкалу от –5 до +5, чтобы выразить степень уверенности в ответе.

Часть 4.

Априорные вероятности заменяются новыми значениями при получении новых подтверждающих свидетельств.

Часть 5.

Подсчитываются новые значения правил. Определяются также минимальное и максимальное значения для каждой болезни, основанные на существующих в данный момент априорных вероятностях и предположениях, что оставшиеся свидетельства будут говорить в пользу гипотезы или противоречить ей. Важно выяснить: стоит ли данную гипотезу продолжать рассматривать или нет? Гипотезы, которые не имеют смысла, просто отбрасываются. Те же из них, чьи минимальные значения выше определенного уровня, могут считаться возможными исходами. После этого возвращаемся к части 3.




Содержание  Назад