Data Mining


         

О других преимуществах аутсорсинга для


О других преимуществах аутсорсинга для Data Mining будет рассказано в следующем разделе курса.

Роли Data Mining, в зависимости от конечной цели работ, распределяются следующим образом:

  • исследователи (написание исследовательских докладов и статей);
  • практикующие аналитики (решение реальных и практических задач анализа данных);
  • разработчики программного обеспечения (написание Data Mining- программного обеспечения);
  • студенты (в настоящее время обучающиеся в учебных заведениях);
  • бизнес-аналитики (главным образом, оценивающие результаты использования data mining);
  • менеджеры (управляют одним или большим количеством проектов);
  • другие.
Согласно последним опросам на KDnuggets, наибольшее число из голосующих - это практикующие аналитики, использующие технологию Data Mining для анализа реальных данных (34%), и исследователи (19%), далее идут студенты, бизнес-аналитики, разработчики программного обеспечения и менеджеры.

Теперь мы рассмотрим процесс Data Mining в разрезе работ, выполняемых описанными выше специалистами, коснемся распределения их обязанностей, укажем, где эти работы пересекаются в процессе достижения бизнес-цели.

Напомним, что процесс Data Mining практически никогда не является линейным, в большинстве случаев это итеративный циклический процесс. Именно итеративность гарантируют процессу Data Mining такой результат, который будет адаптирован под решение конкретной задачи.

Процесс Data Mining, с точки зрения человеческого фактора, является постоянным взаимодействием трех основных специалистов.

Взаимодействие специалиста по добыче данных и специалиста по предметной области осуществляется в двух точках соприкосновения (не забываем при этом, что Data Mining - итеративный процесс).

Первая точка - анализ предметной области, где определяются задачи и требования к будущей системе. Специалист по добыче данных должен вникнуть в предметную область, изучить ее базовые термины, другими словами, он должен провести анализ предметной области. На основании знаний методов и инструментов Data Mining специалист по добыче данных предлагает вариант решения проблемы.


Содержание  Назад  Вперед