Data Mining



     Bpm отзывы смотрите на сайте. | На сайте http://www.lodkamarket.ru мотор меркурий 8 л +с цена. |     

Погрешности в процессе Data Mining


Процесс Data Mining может быть успешным и неуспешным. Использование Data Mining не является гарантией получения исключительно достоверных знаний и принятия на основе этих знаний абсолютно верных решений.

Построенная модель может обладать рядом погрешностей. Вот некоторые из них: недостоверные исходные допущения при построении модели; ограниченные возможности при сборе необходимых данных; неуверенность и страхи пользователя системы, и, в силу этого, слабое их применение; неоправданно высокая стоимость.

Наиболее распространенной погрешностью модели являются неверные или недостоверные исходные допущения. Некоторые допущения поддаются объективной предварительной проверке, другие не могут быть заранее проверены. Если модель Data Mining основана на допущениях, естественно, ее точность зависит от точности допущений. Если допущения предыдущих периодов при использовании модели не оправдались, т.е. оказались неточны, то следует отказаться от "продления" этих допущений на будущие периоды.

Допустим ситуацию, когда модель хорошо работает в 18 из 20 филиалов компании. В двух филиалах, скорее всего, причина ошибок кроется не в погрешностях или неточностях модели, а в совсем других причинах, например, в данных. Если же модель плохо работает во всех филиалах без исключения, то, скорее всего, построенная модель некорректна.

Довольно сложно и установить время, которое необходимо для определения качества оценки модели. Этот отрезок времени обусловливается спецификой задачи и определяется индивидуально.

Ограниченные возможности при сборе необходимых данных

Как говорилось в одной из предыдущих Лекций, при формировании переменных модели следует абстрагироваться от тех данных, которые есть в наличии. Однако, не всегда есть возможность получить именно те данные, которые необходимы, а также быть уверенными в их качестве. Тем не менее, следует учитывать, что точность построенной модели определяется точностью входных данных.

Если внешние факторы, включенные в модель, изменяются очень часто, эти изменения должны отражаться в системе.


Содержание  Назад  Вперед