Определение количества кластеров
Существует проблема определения числа кластеров. Иногда можно априорно определить это число. Однако в большинстве случаев число кластеров определяется в процессе агломерации/разделения множества объектов.
Процессу группировки объектов в иерархическом кластерном анализе соответствует постепенное возрастание коэффициента, называемого критерием Е. Скачкообразное увеличение значения критерия Е можно определить как характеристику числа кластеров, которые действительно существуют в исследуемом наборе данных. Таким образом, этот способ сводится к определению скачкообразного увеличения некоторого коэффициента, который характеризует переход от сильно связанного к слабо связанному состоянию объектов.
В таблице 13.2 мы видим, что значение поля Coefficients увеличивается скачкообразно, следовательно, объединение в кластеры следует остановить, иначе будет происходить объединение кластеров, находящихся на относительно большом расстоянии друг от друга.
В нашем примере это скачок с 1,217 до 7,516. Оптимальным считается количество кластеров, равное разности количества наблюдений (14) и количества шагов до скачкообразного увеличения коэффициента (12).
Следовательно, после создания двух кластеров объединений больше производить не следует, хотя визуально мы ожидали появления трех кластеров.
Агрегирование данных может быть представлено графически в виде дендрограммы. Она определяет объединенные кластеры и значения коэффициентов на каждом шаге агломерации (отображены значения коэффициентов, приведенные к шкале от 0 до 25).
Дендрограмма для нашего примера приведена на рис. 13.5. Разрез дерева агрегирования вертикальной чертой дал нам два кластера, состоящих из 9 и 5 объектов.
На верхней линии по горизонтали отмечены номера шагов алгоритма, всего алгоритму потребовалось 25 шагов для объединения всех объектов в один кластер.
Рис. 13.5. Дендрограмма процесса слияния