Data Mining

       

Задачи, решаемые при помощи карт Кохонена


Самоорганизующиеся карты могут использоваться для решения таких задач, как моделирование, прогнозирование, поиск закономерностей в больших массивах данных, выявление наборов независимых признаков и сжатие информации.

Наиболее распространенное применение сетей Кохонена - решение задачи классификации без учителя, т.е. кластеризации.

Напомним, что при такой постановке задачи нам дан набор объектов, каждому из которых сопоставлена строка таблицы (вектор значений признаков). Требуется разбить исходное множество на классы, т.е. для каждого объекта найти класс, к которому он принадлежит.

В результате получения новой информации о классах возможна коррекция существующих правил классификации объектов.

Вот два из распространенных применений карт Кохонена: разведочный анализ данных и обнаружение новых явлений [39].

Разведочный анализ данных. Сеть Кохонена способна распознавать кластеры в данных, а также устанавливать близость классов. Таким образом, пользователь может улучшить свое понимание структуры данных, чтобы затем уточнить нейросетевую модель. Если в данных распознаны классы, то их можно обозначить, после чего сеть сможет решать задачи классификации. Сети Кохонена можно использовать и в тех задачах классификации, где классы уже заданы, - тогда преимущество будет в том, что сеть сможет выявить сходство между различными классами.

Обнаружение новых явлений. Сеть Кохонена распознает кластеры в обучающих данных и относит все данные к тем или иным кластерам. Если после этого сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну.



Содержание раздела