Data Mining

       

Сокращение дерева или отсечение ветвей


Решением проблемы слишком ветвистого дерева является его сокращение путем отсечения (pruning) некоторых ветвей.

Качество классификационной модели, построенной при помощи дерева решений, характеризуется двумя основными признаками: точностью распознавания и ошибкой.

Точность распознавания рассчитывается как отношение объектов, правильно классифицированных в процессе обучения, к общему количеству объектов набора данных, которые принимали участие в обучении.

Ошибка рассчитывается как отношение объектов, неправильно классифицированных в процессе обучения, к общему количеству объектов набора данных, которые принимали участие в обучении.

Отсечение ветвей или замену некоторых ветвей поддеревом следует проводить там, где эта процедура не приводит к возрастанию ошибки. Процесс проходит снизу вверх, т.е. является восходящим. Это более популярная процедура, чем использование правил остановки. Деревья, получаемые после отсечения некоторых ветвей, называют усеченными.

Если такое усеченное дерево все еще не является интуитивным и сложно для понимания, используют извлечение правил, которые объединяют в наборы для описания классов. Каждый путь от корня дерева до его вершины или листа дает одно правило. Условиями правила являются проверки на внутренних узлах дерева.



Содержание раздела