Data Mining

       

Задачи регрессионного анализа


Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии, оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

  • положительная линейная регрессия (выражается в равномерном росте функции);
  • положительная равноускоренно возрастающая регрессия;
  • положительная равнозамедленно возрастающая регрессия;
  • отрицательная линейная регрессия (выражается в равномерном падении функции);
  • отрицательная равноускоренно убывающая регрессия;
  • отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

  • Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.
  • Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь.
Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.
Предположение о нормальности остатков. Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммами остатков.
При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.
Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.
Уравнение регрессии.
Уравнение регрессии выглядит следующим образом: Y=a+b*X
При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.
В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.
Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).
Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.
На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а - 8.3в.
ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика
Регрессионная статистика
Множественный R0,998364
R-квадрат0,99673
Нормированный R-квадрат0,996321
Стандартная ошибка0,42405
Наблюдения10
Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а, - регрессионную статистику.


Величина R-квадрат, называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].
В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.
Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значение R-квадрата, близкое к нулю, означает плохое качество построенной модели.
В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.
множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).
Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.
В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно, множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).
Таблица 8.3б. Коэффициенты регрессии
КоэффициентыСтандартная ошибкаt-статистика
Y-пересечение2,6945454550,331768788,121757129
Переменная X 12,3054545450,0466863449,38177965
* Приведен усеченный вариант расчетов
Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б. Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).
Исходя из расчетов, можем записать уравнение регрессии таким образом:
Y= x*2,305454545+2,694545455Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).
Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной.


В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.
Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).
В таблице 8.3в. представлены результаты вывода остатков. Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".
ВЫВОД ОСТАТКА
Таблица 8.3в. ОстаткиНаблюдениеПредсказанное YОстаткиСтандартные остатки
19,610909091-0,610909091-1,528044662
27,305454545-0,305454545-0,764022331
311,916363640,0836363640,209196591
414,221818180,7781818181,946437843
516,527272730,4727272731,182415512
618,832727270,1672727270,418393181
721,13818182-0,138181818-0,34562915
823,44363636-0,043636364-0,109146047
925,74909091-0,149090909-0,372915662
1028,05454545-0,254545455-0,636685276
При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными на рис. 8.3. Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.
Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3.  Исходные данные и линия регрессии
Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.
Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4.
Таблица 8.4. Результаты прогнозирования переменной YxY(прогнозируемое)
1128,05455
1230,36
1332,66545
1434,97091
1537,27636
1639,58182
Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:
  • построили уравнение регрессии;
  • установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;
  • установили направление связи между переменными;
  • оценили качество полученной регрессионной прямой;
  • смогли увидеть отклонения расчетных данных от данных исходного набора;
  • предсказали будущие значения зависимой переменной.
Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.
Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

Содержание раздела