Data Mining

       

Сравнение свободного поиска и прогностического моделирования с точки зрения логики


Свободный поиск раскрывает общие закономерности. Он по своей природе индуктивен. Закономерности, полученные на этой стадии, формируются от частного к общему. В результате мы получаем некоторое общее знание о некотором классе объектов на основании исследования отдельных представителей этого класса.

Правило: "Если возраст соискателя < 20 лет и желаемый уровень вознаграждения > 700 условных единиц, то в 75% случаев соискатель ищет работу программиста"

На основании частного, т.е. информации о некоторых свойствах класса "возраст < 20 лет" и "желаемый уровень вознаграждения > 700 условных единиц", мы делаем вывод об общем, а именно: соискатели - программисты.

Прогностическое моделирование, напротив, дедуктивно. Закономерности, полученные на этой стадии, формируются от общего к частному и единичному. Здесь мы получаем новое знание о некотором объекте или же группе объектов на основании:

  • знания класса, к которому принадлежат исследуемые объекты;
  • знание общего правила, действующего в пределах данного класса объектов.

Знаем, что соискатель ищет руководящую работу и его стаж > 15 лет, на 65% можно быть уверенным в том, что возраст соискателя > 35 лет.

На основании некоторых общих правил, а именно: цель соискателя - руководящая работа и его стаж > 15 лет, мы делаем вывод о единичном - возраст соискателя > 35 лет.

Следует отметить, что полученные закономерности, а точнее, их конструкции, могут быть прозрачными, т.е. допускающими толкование аналитика (рассмотренные выше правила), и непрозрачными, так называемыми "черными ящиками". Типичный пример последней конструкции - нейронная сеть.

3. Анализ исключений (forensic analysis)

На третьей стадии Data Mining анализируются исключения или аномалии, выявленные в найденных закономерностях.

Действие, выполняемое на этой стадии, - выявление отклонений (deviation detection). Для выявления отклонений необходимо определить норму, которая рассчитывается на стадии свободного поиска.

Вернемся к одному из примеров, рассмотренному выше.

Найдено правило "Если возраст > 35 лет и желаемый уровень вознаграждения > 1200 условных единиц, то в 90 % случаев соискатель ищет руководящую работу". Возникает вопрос - к чему отнести оставшиеся 10 % случаев?

Здесь возможно два варианта. Первый из них - существует некоторое логическое объяснение, которое также может быть оформлено в виде правила. Второй вариант для оставшихся 10% - это ошибки исходных данных. В этом случае стадия анализа исключений может быть использована в качестве очистки данных [12].



Содержание раздела